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PFACE

'his Memorandum is a part of RAND's continuing VELA Analysis study

for the Advanced Research Projects Agenacy and deals with a technique

for detecting nuclear test8 in the atmosphere. It presents the basic

physical models for the infrasonic effects which have been observed

from nuclear bursts. It discusses the propagation of low-frequency

(less than one-tenth of a cycle per second) sound from nuclear explosions,

attempting to predict the type of signal observed. For long-period

waves, the Memorandum represents a refinement of previous work; for

short-period waves, the Memorandum is perhaps the first serious examina-

tion of the prohlem in this context. This study should be of use in

rzvealiiig more effective inethods of date treatment to better evaluate

the infrasonic method of detecting nuclear explosions.

The Memorandum was also submitted for publication in a special

issue of the IEEE ov high-altitude nuclear detection.

The author) a Consultant to The RAND Corporation, is a professor

in the Department of Aeronautics and Engineering Mechanics, University

of Minnesota.
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4 This Memorandum deals primarily with the effects of geometric

dispersion on low-frequency mechanical waves generated by nuclear

explosions. This dispersion is the result of the stratification of

the atmosphere (to be distinguished from dispersion due to changes in

physical characteristics due to changing frequency). It is found

that the pressure signal can be divided naturally into an early-

arriving acoustic-gravity portion (treated in this Memorandum) and a

later--by about 5 p-r cent of the travel time--acoustic portion.

In general, both portions of the signal are inversely proportional

to the range (geometric spreading included) although at very great
1/6

ranges portions of the gravity wave fall off faster by r ; the ef-

fect of dispersion is to reduce the signal by r -. Most of the signal

is composed of many propagating modes which, at a given time and range,

will each demonstrate a characteristic frequency. A simplified treat-

ment of this complicated model picture is presented here. It is

argued that a ray treatment for -he higher-frequency portion is

appropriate. It is shown that the frequency of the long-period signal

increases with time. So long as the frequency of the received signal

is less than the characteristic frequency of the initiating explosive

impulse, it is found that the signal has a universal form for the

fundamental mode. Such characteristics as yield, range, and phase

velocity merely change the scaling of the signal. It is concluded

that attenuation is probably not important for the low-frequency

signals (below one --.s) usually observed.



48 vii

It is a pleasure to acknowledge many very helpful discussions

with Paul Tamarkin and T. F. Burke of The RAND Corporation.



ix

PREFACE ........................................................ ii

SU MMARY ........................................................ v

ACKNOWLEDC4ENTS .................... . ... ....... ............ vii

LIST OF FIGURES ................................................. xi

Section
I. INTRODUCTION ............................. ............ 1

II. SIGNAL DISPERSION ....................................... 10

III. DISCUSSION OF LONG- il-D INTERMEDIATE-PERIOD
SIGNAL DISPERSION .................................... 15

IV. SIGNAL ATTENUATION ..................................... 25

V. CONCLUSIONS ............................................. 27

REFERENCES ..... ....... ....................... ............... 30

,

!- .u--."



,V i

T.T.qT OF PT(IIRF..q

1. Average vertical variation of absolute temperature in the ..... 6
atmospherE

2. Phase and group •velocity curves for COSPAR model atmospheres.. 7

3. Low-frequency universal response of the atmosphere for the
fundamental mode ........................................... 18

..........



I. INTRODQUCTION

This Memorandum deals primarily with the effects of geometric

dispersion on low-frequency mechanical waves generated by nuclear

explosions. Geometric dispersion in general reduces the signal

amplitude by an amount proportional to r-½, where r is the range.(I)

That this is so can be seen as follows: Suppose the amplitude of

the wave train is A. The time duration of the disturbance after

some time becomes proportional to the range as a result of dis-

persion. Total energy must be conserved (neglecting attenuation),

so we have approximately

A r = constant

Hence A r-, as suggested. This reduction is in addition to that

caused by geometric spreading.

The characteristics of low-frequency, atmospheric, acoustic-

gravity waves have been investigated by a number of authors. Such

waves can be generated by natural events as well as by nuclear explo-

sions. We shall restrict the discussion largely to the latter. No

attempt will be made here to compile a complete bibliography on the

subject. However, we should mention normal mode calculations per-

formed by Pfeffer,(2) Pfeffer and Zarichny,(3) Harkrider(4) and

Pierce. (5) Harkrider has succeeded in calculating the expected low-

frequency signal (hereafter this term. and the term long-period,

mean waves with periods of more than one minute). He used five modes

in the rather complex calculations. It is the major purpose of this

Memorandum to attempt to obtain the essential characteristics of the low-

frequency signal more simply (and, of course, less accurately).
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The appropriate mathematical theory for the long-period character-

istics of acoustic-gravity waves is given in Ref. 2. From the outset

we distinguish between those waves for which gravitational effects are

important (periods greater than 60 sec) and acoustic waves (periods

less than about 60 sec). For the former, a normal mode treatment

is indicated--as discussed in Refs. 2 through 5. We examine some 'of the

expected characteristics of such waves on the baqis of sim~lified

models. For intermediate periods (from 30 to 120 sec) the situation

is one where we must still use normal mode methods, but where a

number of normnal modes can propagate. For the acoustic part of the

signal, a very great number of modes can propagate and a ray treat-

ment is more useful.

We introduce here a discussion of the normal mode treatment.

For our purpose it will be assumed that we observe the mode in the

radiation zone, where kr >> 1, with k a typical propagation constant.
th

Then we have tur the pressure of the n mode

ikn (w) r- iwt

Pn = G(r)En (W.Z0) En(wZ) e (1)

where G(r) is a geometric spreading factor with

G(r) = r (2)

for propagation in a flat-earth atmosphere (see discussion below),
,

E is the excitation function for point excitation, 7 is sourcen o

height, Z is receiver height (set equal to zero for ground-level

For details of the excitation process, see Ref. 4.



detection), k = w/c , with c the phase velocity of the nth mode.' n pn 'pn

It is assumed in Eq. (1) that the excitation is a single-frequency

continuous wave. For the usual pulse excitation, we take the Fourier

Transform (F.T.) of the initiating disturbance to find

=_P Eik (w)r-icot

in -2 f 2n 0 in e dnn (3)

where we assume the excitation pressure p(t) has the F.T. P

P(CD) J . eia)t p(t) dt , (4)

The function p(t) is found by taking the pressure at a range far

enough from burst so that the overpressure is a small fiaction of the

ambient pressure, but not -- far that the inhomogeneous characteristics

of the medium influence the pulse form. Admittedly, it may be difficult

to find such an intermediate range for large yield events. In such a

case, we mean by p the linearized pressure disturbance which would be

observed in an infinite homogeneous medium. The empirically observed

form of the pressure is approximately(6)

p(t) = 0 t < 0

(5)
-t/t+

t + t > 0
p(0t)= p( -) et0

0 t+



4

where t + tl t 1.0 sec and Y is the yield in KT. The over-

1/3
pressure PO is also proportional to Y . It is emphasized that the

numerical value of t' is somewhat uncertain. The F.T. of Eq. (5) is

= p-i) (6)I0 - 2(t+ -~'

We discuss the calculations which are available for the functions

appearing in Eq. (3). For simplicity the calculations have been per-

formed assuming a horizontal atmosphere. This is adequate for ranges

which are less than a quarter of the circumference of the earth. For

greater ranges we should take into account the lack of further geo-

metric spreading, due to the spheri-ýal earth. It seems reasonable to

include, approximately, such effects by modifying the relation, Eq. (2),

for the geometric factcr. Thus, for the usual case where wavelengths

are small compared with Re , the radius of the earth, we have

-1/2
G(r) = IR sin 1 (7)

e

with r measured along the surface of the earth. The focus at the

antipode, r = , Re, is smeared due to the fact that different earth

paths have different temperatures and winds and thus different propa-

gation times. The maximum value at the antipode is

There are two, largely unresolved, difficulties in the determination
of t+. First, it might be that with a large burst, the first impulse
takes on a nonspherical form before it becomes linearized, due to atmos-
pheric inhomogeneities. In such a case it is n3cessary to use a source
function more complicated than a simple source function. Second, the
time of the positive phase, t , is not well known. In Ref. 6, p. 117, the
value of t+ has not attained its asymptotic value at the maxiiwri range
shown. On the basis of known informaticn, this vaLue must be e.;tniattd
(the author is indebted to T. F. Burke of the RAND Corporation for this
statement).
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G ant i W (8)
aRe)

where e, order of a few per cent, is the fractional change in group

velocity for different paths. Other effects aside, we see the focusing

effect might be appreciable. An interesting consequence of Eq. (7) is

that after traveling a fraction of the circumference of the earth, the

signal shows no further reduction in amplitude due to geometric spread-

ing. Observed reduction in signal amplitude with range then must be

due to possible attenuation (usully negligible in situations of

greatest practical interest) or dispersion, which is the main effect.

In order Ln correctly calc, 1lte the excitation functions and the

modal phase velocitics, cpn, we must specify the atmospheric charac-

teristics as a function of height. For this purpose Pfeffer and

Zarichny(3) used the COSEAR standard atmosphere shown in Fig. 1. For a

COSPAR atmosphere to 300 km (constant thereafter) they find the compli-

cated phase and group velocity curves shown in Fig. 2 for the first

few modcs. In the same figure the results for a 52-km atmosphere

(constant above 52 km) are shown. It is seen that this simpler model

gives all of the characteristics of the 300-km model if attention is

restricted to the nearly horizontal portions of the dispersion curves.

This is true although the 52-km fundamental, for instan•ce, is composed

of portions of dispersion curves from several of the 300-km modes. It

is seen that the major portion of the atmosphere (below 52 km) deter-

mines the propagation characteristics. For periods greater than

60 eec, it is seen that the 300-km atmosphere group velocity curves

are either nearly horizontal or nearly vertical. The near-vertical
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there is at any given period only one principal propagatinig mode (and

this one is very similar to the fundamental mode for the 52-km atmos-

phere). Of course, the propagating mode in fact comes from different

modes of the 300-km atmosphere. For pericds from somewhat above 30 sec

to less than 60 sec we see that there are other contributing modes in

the 300-.km atmosphere. The important ones correspond to the funda-

mental and first acoustic modes for the 52-km atmosphere (there are

presumably more than these two modes, although they were not calculated).

As suggested above, these shorter-period modes (say, with periods less

than 10 sec) are besZ treated as rays--which in fact are made up of a

great many propagating modes. It should be pointed out that there may

be doubts about the 300-km calculation discussed here. Tolstoy(7) has

shown that there may be acoustic modes trapped at about 100 km between

the upper-altitude temperature increase and the lower-altitude density

increase. It is expected that such an effect will not influence the

propagation of periods of interest here because of the attenuation at

such altitudes.

It is interesting to note that the 52-km fundamental mode is made

up of acoustic modes from the 300-km calculation for periods less than

250 sec and of gravity modes from the 300-km calculation for greater

periods.

We shall in what follows generally restrict the discussion to the

simpler dispersion curves taken from the calculations for the 52-km

atmosphere. We see that tha long-period gravitational contributions

might be expected to arrive wich a group velocity about 5 per cent

greater (5 per cent less travel time) than the shorter-period acoustic
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signals. Of course, this observation applies to the quasihorizontal

portions of the dispersion curves. The reader is referred to Refs. 2,

3 and 6 for more details concerning the normal mode calculation±s.

In the next section we shall simplify the problem by considering

the behavior of a given normal mode at great ranges. It will be seen

that, as sketched above, due to the dispersion caused by the strati-

fied inhomogeneity of the atmosphere, the signal amplitude reduces

with range. This and other characteristics of the signal will be

obtained from Eq. (3). The discussion of possible attenuation effects

appears in Section IV.
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ii. SIGNAL DISPERSION

For long-period, acoustic-gravity waves, we use the method of

stationary phase to approximately evaluate Eq. (3). For large r

and t, P and E are slowly varying functions of w compared with then

exponential. Then, following standard methods, we look for the station-

ary point of the argument of the exponential, which is seen to be ,n

given by

k C - (9)
n n gn r

th

Here w is the n mode frequency, if there is one, whose group velo-

city is equal to r/t. T'en we have for that stationary contribution,

at the frequency w n--given by Eq. (9)

ik( ) iwnt Fi cn 2
ngPn = G(r)eikn(•n)r - n En(Wn,Zo) En(wn,Z) P(,W)X[2jr*gj (10)

using

/
c

k/ gn d

n 2 gn di& gnc
gn

obtained from Eq. (9). Equation (10) is valid in general when c' gn

is not too small (see condition Eq. (15)) and when the range is

large, usually

k r >> 1 (12)

n.M
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The observed signal may be a sum ot many modal contributions of the

type given in Eq. (10). If c' -0, as for instance when the period
gn

greatly exceeds 60 sec, we must modify the trzdLment. This is .--

next.

We note from Fig. 2 that for longer periods the 52-km fundamental

phase and group velocities approach approximately constant values.

It is desirable to calculate the expected behavior for this situation.

The first acoustic mode from the 52-km atmosphere can be treated using

Eq. (10). We assume for long periods (w << w ) for the fundamental

mode, n = 0

Ac 3

k (0) : M + p M-- (13)o •c c2 2

with w the transition frequency (about 2Tr/T where T 0 60 sec) and

C c (AL) (14)

where c is the phase velocity for very long periods and Ac is of
pCO p

the order of the change in the phase velocity, to be obtained by fitting

the phasc velocity of the fundamental 52-km mode in Fig. 2. We see

Ac
from that figure that --. :, 0.05.

c

The restriction on c' for the validity of Eq. (10) can be written
gn

conveniently in terms of Eq. (14). it is

w /( oa1/2 1/

It might be thought from a casual observation of Fig. 2 that there

is a similar situation for short periods. However, when the curves

are put on a linear rather than a logarithmic p]ot, it is found that
they actually have finite slope as the period tends to zero.
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with X the wavelenath corresDonding to c For values taken

from Fig. 2, the left zide of Eq. (15) is .02 for a range of 8000 km;

for most ranges of interest Eq. (15) is fulfilled.

From Eqs. (5) and (6) note that for ordinary yields Y, the con-

dition that w << w 0 implies that we need the low-frequency limit

behavior of P in Eq. (3). From Eq. (6) we see

- 2 -l116P 0, Pot2%-iw), W << t+1 (16)

Similarly, it is reasonable to believe (and calculations in Ref. 4

show) that the characteristic frequencies of E are of order w•
O 0

Then we also need the long-period behavior of Eo, seen to be approxi-

mately constant; this value of E is called E below. Substituting

these low-frequency approximations in Eq. (3) we find

P =G(r) 2 E Ep(Z) d ( Lp
eo,LP 0 t+ LP LPZo (17)

with

= L[_ exp i r - wt dw (18)I ~IIp -- 2"0c2

I P (the response to a delta function excitation) is found by stand-

ard methods to be

See p. 5309 of Ref. 4.
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r1(2-- t)
1 1 1/2c 3/25-i i r -t) (2,-'- Pop- t > 0

LT C P .O - .. 3,r CP
3

1~ 1 1 1/2 r _3/2 (9

3

+ Jl (2 13/ (t- t. >0

with

6c 1/3
r P 2) (20)

2 2
C Wip'= 0

Here J /3 and K /3 are the usual Bessel and modified Bessel functions.

-i~
It is easily seen from Eq. (18) that T' is the order of the value of

w for which

Ac 3
_- Q r (21)
C2 2

that is, where the cubic term in the exponential begins to bring about

convergence of thr integral. The error made by using the low-frequency

approximation for P(wn) In the region w > t + is negligible if

( 2 2/3
2Acr /
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This condition is satisfied for ranges exceeding a hundred kilometers.

The result of Eqs. (17) through (20) shows that the medium is essenti-

ally a low-pass filter for long-period waves when there is concern

only with the most important mode, the fundamental.
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III. DISCUSSION OF LONG- AND INTERMEDIATE-PERIOD SIGNAL DISPERSION

The reader is reminded that here long periods are those over 60

sec and intermediate periods are those between about 30 and 120 sec.

Under the assumptioa that for long periods the fundamental mode has

group and phase velocities which are nearly constant, the result

given in Eqs. (17)-(29) was obtained. The following characteristics

appear from Eqs. (17)-(20) for the early long-period component--some-

times called the gravity wave:

1. The signal arrival time is approximately fixed by the long-

period phase velocity, c . The precursor at earlier times

increases in amplitude exponentially, The signal amplitude

then, after this "crescendo," increases like where

At =t - cr--. This increase in amplitude continues until

At 3T3 t-2, when frequencies are such that the approxima-

tion, Eq. (16), fails. For later times the more general

result given in Eq. (10) could be used (see below). Since

the growth in signal amplitude is due to the increase of P(w)

with w, an alternative procedure can be used. We use the

pulse transform, Eq. (6), and the period as a function of

At given in Eq. (22) to approximately correct for the pulse
7

form. For this purpose, multiply Eq. (19) by

t 2 -1
I + 7 + (21a)

We assume in such a treatment that the approximate effect of

the pulse speccrumrt is to multiply the signal at time At by

the value of the spectrum function appropriate to the frequenry

occurring at that time.
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2. The first important signe! arrival, when t nr/c has a

long period followed by st.-zessively shorter-period arrivals

(normal dispersion). From Eq. (19) it is seea that using TTn

- for •he approximate zeros of the Bessel functions, when

(At/I) > 1, the period for signal delayed by At is

T 2Tr (13) (22)

We see the perioid decrea•se• like the ½ power of the delay in

ýihis normally dispersed part of the signal.

3. The range dependence is interesting. Th,• amplitude of the

early part of the low-frequency signal is seen from Eqs. (17)-

(20) to fall off like the 2/3 power of the range due to dis-

persion (remembering to take tha derivative as in Eq. (l?7).

For ranges considerably less than R. we use Eq. (27 fox the

function G and- find that t~ie long-pariod wave shculd dpcrease
/7/6

in amplitude like r For greater ranges, r P . the
-2/3

dependence is roughly like r . The period of the first

arrival, at a given At, increases like r; according to

Eq. (22). As the range increases, the amplitude decreases

and the period increases due to dispersion. RK.latively

slow decreases in amplitude with range have± been found

experimentally for signals which circle the globe.(8-9)

4. From Eq. (17) and the scaling laws discussed in Section I,

we see that the emplitude is proportional to yield. The

oignal waveform is otherwise independent of yield so long

~~~~~~~~~~~~~~~~!T ........ FoTZT -• .... . .. .. . _• • ; •
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as At < 3T3 t+2. This should be true for the long-period

gravity wave, but care must be used when the delay is such

that the wave merges with the shorter-period components.

5. For At < 3T 3 t 2 , so that w < t+ we see the signal has a

universal form. The yield, range, and atmospheric effects

enter the scale of the amplitude (for yield) and the time

scale (for range and atmospheric effects).

These characteristics are also obtainable using the simple station-

ary phase treatment given by Eq. (lO). It is emphasized that this re-

sult applies only to the fundamental mode (as defined for the 52-km

atmosphere). Often one or more of the higher modes can be expected to

appear also, and this effect must be calculated using Eqs. (9)-(10).

4 AAc
Consider an cxample: r -0 Kin, W° 2u/6, -2 = .05, c

cA

3 km/sec. Then we find T : 50 sec. Accordingly, the result, Eqs.3

(17)-(20), is valid for At < 3.3 t+2; and with Y - 4 MT, t+ = 16 sec,

we need At < 24 min. From Eq. (22) for At - 103 sec, the period,

T, is 115 sec; for At - 4000, T .-f 55 sec.

The universal result, Eqs. (17)-(20), is shown in Fie.. 3. Thera
2 d /At\

the quantity T d ILp k/ is plotted. The characteri.tics, dis-

cussed above, can be seen. The dashed envelope curve gives the

approximate modificati.on due tc a 4-MT pulse form, given by the factor

of Eq. (21a) (parametero for this curve are those of the example just

completed). It is interesting to note that the initiation of the

signal using the vclocity c iL correcly measred irom the Zicst

positive maximum. The precursor (At < C) is P.ot actually in conflict
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with the general theor .ms concerning the velocity of propagation of

the 6Ignal wave fr;nt bec:,lse of the form of the dispersion curve. We

should use Eq. (9'-(10) to calculate the curve when At is 3ueh thatT

W w; for the example above (4 MT) this means for periods of about

one in the dimensionless units of the graph. However, the approximation,

Eq. (13), is not bad for much higher frequencies, so that it is not un-

reasonable to accept the results for greater time delay.

We turn now to a discussion of the intermediate periods (periods

between 30 and 120 sec). We use Eq. (10) and in general we must con-

sider many propagating modes in the signal. The number of modes may be

quite large when the period is much less than 60 see. We see the fol-

lowing characteristics for the intermediate component:
*

1. By rafer~ing tc Ref. 4, it is found that the fundamental mode

for periods greater than 90 sec has an exzitation function

which is constant at an altitude of 18.5 km. kMore work needs

to be done on the excitation functions in order that the fre-

quency dependence may be examined more clo1ey. As already

remarked, we a3sume that for periods greater than 60 sec tbe

excitation functions are constant.
th

2. Other things being equal, the amplitude of the n mode is

inversely proportional. to the square root of the slope of the

modal group velocity for the frequency in question. As sug-

gested above, the most important mdes are those whose group

velocity curves are most nearly horizontal (see Eq. (10)).

3. The general characteristics of the signal are determined as

follows (see sketch below wnich is a schematic representa-

See p. 5309 of Ref. 4.
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ticn oi the tfrst t.hree modes). First, for a given range

and time, Eq. (ii) :,s used to det4rnir:e the appropriate group

velocity. Then the lower cuives for 52-km atmosphere are

used from Fig. 2 to find which periode appear for the various

modes. Unfortunately, the calculations given there are only

for the fundamental and the first acoustic modes. The other

acoustic modes must be imagined as lying above the first.

The slope of the group velocity curve is determined from

the calculation. The result is that for any range and time

there can be a great number of modes arriving, each with its

appropriate period as explained. We see in the sketch the

three periods for the first three acoustic modes at r,t.

Others are not shown. At a given time many different modes,

each with its own frequency, will make up the signal, though

the fundamental mode is dominant for low frequencies.

t2d acoustic

1st acoustic

r
t /e Fundamental

T:! T,• 2 r/wo To T, period

2;•rt+
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4. The periods of the various modes decrease as the time of

observation increases (normal dispersion), as can be seen from

the sketch. Normal dispersion is (usually) observed experi-

mentally. (8,9,11) The characteristic empirical period,

-l
2rw , is shown in the sketch. The period for which the

0

pulse form becomes important, 2ŽTt+, is also shown; it is the

period below which che simple form of the fundamental, Eqs.

(17)-(20), must be modified because of pulse form.

-½ d u t o d s
5. The amplitude of the signal falls off like r due to dis-

persion. For ranges less than R there is an additionale

factor of r"k for geometric spreading, giving an inverse

r amplitude dependence which is apparently spherical. This

amplitude reduction with range is (approximately) observed

experimentally. For instance, if we suppose that the pres-

sure wave from a I-MT nuclear explosion drops to one-tenth

ambient pressure at a range of about 10 km, we find for the

overpressure at 10,000 km from the above

- (0.1)10 100 d c-2 (23)
10,000 (10 4/10)

This is the approximate size of observed signals. it

is interesting to note that without dispersion, signals would

be 30 times the value given in Eq. (23), i.e., much larger

than signals are found to bc from such events. We note from

Eqs. (10) and (18)-(20) that the long-period, fundamental

gravity wave falls off faster with range (by r -/6) than the

intermediate- (or short-) period wave.
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6. The m prominent lrequency in Lhe intermediaLe signal cannot

be determined without knowledge of the excitation functions.

For short periods where a ray treatment applies, we may expect

the signal to show a frequency maximum at that of the pulse

maximum, Wma
woximuld b max - t+ Hence, the "frequency" of the signal

would be proportional tc Y /3.

7. From Eqs. (6) and (10) it is expected that the amplitude of

the signal would be proportional to po' that is, proportional

1/3
to Y . Howe.er, the excitation function can indirectly,

through the parameter t+ in P, influence the dependence of the

amplitude upon yield. The acoustic signal amplitude can, of

course, be influenced by fluctuating atmospheric propagation

characteristics.

Before closing this section, it is useful to express the inter-

mediate-period mode results in terms of the power spectrum function.

We use the definition of the power spectrum for a segment, 2To, of

record f(t)

P.S.(w) AT- A. (w) 12 (24)
0 0

with

AT (w) =S fT e't f(t) dt. (25)
0 -T

0

th
The result for the power spectrum of the n' mode is found from

Eqs. (10) and (24) to be

. . 's
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P.S.(w) = G IE(w Z) E Z)
nr nf o 0 n )P- n

(sin2 T (w-w%) (26)

8r2 C (W-Wn)2 T
gn n 0

We assume that the change in wn is slight in the record segment time

T . The last factor it, Eq. (26) gives the peak width when it is deter-0

mined by To. The total power spectrum is approximately a sum of terms

like Eq. (26), one for each mode.

th
It is also useful to consider the total energy in the n mode

for r < R
e

2rT

= K j r de J dZ j IPn12 dt (27)
0 0

where K is constant, independent of range, and 9 is the azimuth angle

about the source. The result must be independent of the range for a

loss-free medium. The total energy is given by a sum over terms like

Eq. (27), covering all of the propagating modes; we neglect inter-

ference effects which do not affect the energy content. The range

independence is, of course, a reflection of the fact that geometric

dispersion in the medium does not affect the energy of the propagating

wave. This suggests using the integral of the square of the observed

pressure signal since this quantity would show no reduction with range

2due to dispersion. It would decrease like i/r rather than 1/r . The

range dependence of the energy would be entirely geometric. For

r > Re) the average geometric reduction should be slight. For such

ranges, we should find
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F p2(t) dt • constant, independent of r (28)

Noise can be removed by subtracting an integral like Eq. (28) for the

noise signal. It should be emphasized that Eq. (28), representing as

it does a fraction of the explosion energy, should be proportional to

yield. This dependence should be compared with the fractional power

yield dependence of some other characteristics. We see from Eq. (28),

as remarked above, that since dispersion causes the signal to spread

in time proportional to range, we can expect the pressure to be propor-

tional to r"½ for ranges such that r > Re

For shorter-period acoustic waves, we can employ the full

formalism of ray treatment. This will not be done here. However,

a few outstanding characteristics are worth notiag. First, the

range dependence due to atmospheric stratification is also r-2

as for normal modes. We might expect interference effects due to

multi-path phenomena for shorter ranges. The most prominent circular

frequency in this part of the signal will occur at (t )+ , the

characteristic frequency of the initiating explosion.
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IV. SIGNAL ATTENUATION

We shall consider in this section a few of the more prominent

attenuation mechanisms. F'rst, we examine absorption due to molecular,

vibrational relaxation. Using accepted vaiues we have for the

attenuation coefficient

2S•1-9 w' -1
a 9WT2 2 cm , r .002 - .05 sec (29)

1 + (1) T

For -= a 5-sec period

S- 10 1 1  cm (30)

The signal reduces to a fraction of its value in 106 km due to molecular

absorption. For periods above a few seconds we conclude that such

attenuation can be neglected.

Consider now the attenuation which would be caused by scattering

from velocity irregularities set up by atmospheric turbulence. Due

to the pulsed nature of the initiating signal, we shall for simplicity

assume that once a signal is scattered it is lost. It is true that

some of such energy is regained, but for the present purpose of estima-

tion we neglect such contributions. Since we are interested here in

long-period disturbances whose wavelengths are usually greater than

the scale of atmospheric irregularities, we restrict the discussion

to Rayleigh scattering. We find for the attenuation coefficient

S• ka)4 1 (A)2(ka)- (AN) , ka < 1 (31)

a

2 (AN) ka 1 l (32)
a

(Eq. (32) is given for completeness.)

- -- - - -- '- - -7 1
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&, Eq. (31), a is the turbulence scale length--the correlation iength,

AN is the turbulent velocity fluctuation relative to the speed of

sound, and we have assumed that the turbulent eddies are "close-

packed," that is, the medium is fully irregular. The Rayleigh result

goes over to a geometrical optics result of the order given in Eq. (32)

for higher frequencies. A typical scale length for atmospheric

turbulence is about 1 kin. Taking the maximuti atLenuation given ia

Eq. (32), for a period less than about 20 sec, and using AN - .005,

a value appropriate to the upper atmosphere, we find

-1

1 -•40,000 km

Longer periods would give even less attenuation. We conclude that

because of the low zontrast of turbulent velocity fluctuations,

attenuation due to such scattering is negligible for low-frequency waves.

For higher frequencies, although the scattering from turbulent

eddies is slight, there can be appreciable reflection from laminar

wind ducts.

More generally, it can be argued from experimental observations

(see, for instance, Refs. 8 and 9) that there is no appreciable signal

attenuation at present ranges of observation. Any attenuation mech- "sm

wou)d give a certain reduction in signal per unit length. Then, if the

zigital is reduced by aztenuation to a fraction by traveling a fraction

of the way around the earth, it would be reduced bý that fraction to

the ntb power %3r.a path n times as long. But the first reduction

due to attenuation must be negligible since no such drastic reduction

is observed in subsequent passes around the earth.
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V. CONCLUSIONS

We have examined the effect of dispersion on a,'oustic-gravity

waves generated oy nuclear events at great ranges. It is shown by

using the normal mode calculation- of Pfeffer that it is natural to

divide the signal into three parts: low-frequency gravity modes,

intermediate-frequency signals, and acoustic signals. The charac-

teristics of the first two were examined in Sections II and III. It

is found that, in general, dispersion causes a reduction of signal

amplitude proportional to the square root of the range, regardless

of the portion of the signal considered. This is in addition to the

reduction due to simple geometric spreading. The additional range

dependence is sufficient to give the observed reduction in signal

level over that expected from ordinary cylindrical spreading.

We summarize the results. In order to calculate the pressure

in different period ranges (alternatively for different time delays),

see below.

Fundamental Mode

0 For a period greater than 60 sec and 2T7 t (alternatively
w +

0
•c Ac

At less than 3 - r and 3 _ rt)2 -- 2 2 2~use Eqs. (17)-(20),

C c W t

PCOPoo 0 +

where it is assumed the excitation function is constant in

frequency.

So For a period less than either above (alternatively At greater

than corresponding quantities above), usu Eqs. (9)-(10).

Higher Modes

o For all period use Eqs. (9)-(10).

S.. . .. .r . . . _ . .. . . .
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It is appropriate to comment on the expected variability of

pressure records. First, it seems reasonable to assume that the gravity

waves will exhibit little variability with changes in tropospheric

conditions, since they have very great wavelengths. The same cannot

be said of the acoustic waves (periods less than about 20 sec). Their

wavelengths are of the order of, or less than, the size of prominent

features of the lower atmosphere. From Fig. I it is seen that there

is an acoustic velocity maximum at about 50 km. This maximum has a

width of about 10 km, which corresponds tc the wavelength cf a 30-sec

period wave. For such periods and shorter, wi should expect that changes

in wind velocLty at 50 km might seriously affect the modal excitation

functions and to a lesser extent the dispersion curves, or alternatively

the tay propagation characteristics, in this way, the large and variable

winds at such altitudes might cause considerable variability in the

acoustic and perhaps intermediate-frequency signals. This would be

particularly true since relatively small changes in wind speed are

seen from Fig. I to be sufficient to cause the disappearance of the

lower duct altogether, as observed from the ground.

Another conclusion which should be emphasized is that the integral

of the square of pressure record, the "energy" in the wavc, may serve

as a more sensitive characteristic for detection than the signal

itself. This is so since such a measure removes the effect of disser-

sion. Thus, tne range dependence is just that of the (range periodic)

geometric spreading. It is seen that this epergy is proportional to

yield.



For future work it is suggested that power spectral funcrions

(P.S.F.'&) be calculated for the sigral records in order to deter-

mine the signal characteristics along the lines discussed in this

Memoranaum.

Signal variability forms an interesting topic in itself. It

would be helpful to at.empt to correlate this variability with upper

atmosphere winds. It will be interesting to examine further P.S.F.'s

to see the behavior of thr spectral peaks. In particular, the reduction

in frequency with increased time of travel should be looked for. Such

frequency-travel time results can be used to obtain an experimental

determination of the group velocity dispersion curves for the various

modes. Finally, it seems desirable to obtain the characteristics of

the modal excitation functions for shorter periods and as a function

of altitude. It is noted that these functions may yield important

information on burst height (see Eq. (I)).

The results of the Amplified calculations discussed in this

report have been compared with the more complete results of Harkrider.4)

The frequency dispersion and signal amplitudes correspond well, with-

in 10-20 per cent in the cases considered.
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